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1. Introduction 

Measurements became a 'problem' for quantum theory essentially for the 
following simple reason: The quantum theoretical account of micro pro- 
cesses requires us on many (in fact most) occasions to represent the state of 
a system as a linear superposition of eigenstates.~ The results of  a measure- 
ment on such a system, however, always issue in the appearance of one 
particular eigenvalue associated with only one particular eigenstate among 
those appearing in the expansion; thus if one wants, following classical 
physics, the results of a measurement to refer to the state of  the measured 
system at all (whether predictively or retrodictively) it seems necessary to say 
that at some point in time the system was (or is) in a state accurately 
represented by the particular single eigenstate associated with the measure- 
ment result. But this conclusion forces us to recognize the existence of  a 
'gap' between the two representations, between the linear superposition 
and the single eigenstate. The so-called 'problem of measurement' in 
quantum theory is to understand the origin and ~lature of this 'gap'. 

In a recent book, Professor Josef Jauch (1968) develops an interesting 
treatment of  this problem, and it is my purpose to submit that approach to 
a critical examination in this paper. But first the better-known approaches 
need to be briefly developed. 

The most well known, one could say the 'standard', account of the gap is 
that due to yon Neumann (1932). Von Neumann supposed that measure- 
ments had predictive value, i.e. that the state of  a system for times im- 
mediately after the measurement time were to be represented by the ap- 
propriate single eigenstates. In effect, yon Neumann's 'theory' of measure- 
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ment was simply to assert that the act or process of measurement reduced 
the state of the system from whatever it was prior to the measurement time 
to the appropriate single eigenstate after the measurement process was 
completed. In the picturesque language of Hilbert space, the measurement 
projects the state vector onto one or other of the basis vectors. This process 
is the so-called reduction of  the wave packet. 

The nature of this reduction process was, however, unclear. Since von 
Neumann had presented an argument to the effect that any part of the world 
up to, but not including, the observer's actual conscious activity, could be 
included in the quantum description of the 'object', it seemed to many that 
the reducing agent in the measurement situation was the conscious activity 
of the human mind. (See, for example, London & Bauer, 1939; Wigner, 
1962, 1963.) 

For many people this subjectivist position was an unsatisfactory one for 
physics to espouse and alternatives were sought. Perhaps the most persua- 
sive alternative approach is that represented by what I shall call the 
'Approximationists'. This group includes earlier work by Ludwig (1967) 
and the contemporary work of Danieri et al. (1962, 1966) and Rosenfeld 
(1965). Their work is characterized by two features: (i) they take the reduc- 
tion process seriously, i.e. they regard it as (at least in part) a substantial 
physical process, (ii) they attempt to offer a physical explanation, compatible 
with the quantum theory, of the substantial physical part of the reduction 
process and to argue that the remainder of the process is unproblematic. 
In this way they aim to solve the problem of measurement. 

I shall now describe the Approximationist approach in a little more detail, 
for it will prove helpful in understanding Jauch's position by contrast with it. 
One commences by characterizing 'macro variables' and 'macro states' in 
a manner which is the quantum analogue of the characterization of macro- 
scopic states in classical statistical mechanics, This characterization then 
represents the macroscopic measuring device as a very complex statistical 
aggregate of microscopic components. A measuring device characterized 
in this fashion is then allowed to interact with a typical micro system and 
the whole (i.e. the composite system) allowed to evolve in the usual unitary 
fashion (i.e. according to Schrrdinger's equation). One then argues that 
the resulting state of the system, after the measurement interaction has 
ceased, is statistically effectively indistinguishable from a state of the 
system in which the various possible measurement outcomes are represented 
by a straightforward statistical ensemble (i.e. by a mixture). In this fashion 
one attempts to justify (as pragmatically correct) the claim that at the end of 
the measuring process the micro system and measuring apparatus are 
each in some one definite state, though which is not yet known. The tran- 
sition from this situation to a particular, actual known outcome for the 
measurement is then held to be unproblematic since it is an epistemic 
transition alone, i.e. it simply represents a change in our knowledge (from 
ignorance of which possibility was realized to the knowledge of which one 
was realized). 
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Let us set down these two accounts of measurement schematically. We 
shall suppose that we commence with a micro system in the following state 

~bs _ x: a .ts (1.1) 
t = o  - -  . ~  i ' ~ ' i , t=O 

i 

In the traditional yon Neumann account one then supposes that the measur- 
ing instrument is also in some state or other (say the null position of its 
pointer reading) and we shall characterize this state by ~b~0. Let the 
evolution of the system under the measurement interaction be governed 
by a unitary operator U(t', t") such that 

$ S 
U(0, t) (~b~0 | a, ~,.t=0) = a, if,., | ~htM(i) (1.2) 

(here | is the tensor product). Equation (2.2) represents a good measure- 
ment interaction of the 'first' kind (i.e. the measurement does not 'disturb' 
the state of the system and it concludes with the apparatus state one-one 
correlated with the appropriate mathematical components of the object 
state). Initially, then, we have the state of the combined system consisting 
of object and measuring apparatus as 

~lr~+-_~ t = ~b~o | ~ a, ~s.t= 0 (1.3) 

and this state has evolved into 

= ,4h.t | ~b,u(i) (1.4) 
l 

by the end of the measurement interaction. When the result of the measure- 
ment is known the state of the system must be represented by 

~+M _ .ts | ~b Za(k ) (1.5) , t  - -  'P'g,t 

for some value of k belonging to the range of values of i in the above 
equations. The probability that the kth term will be the appropriate one to 
represent the outcome of the measurement is given by lakl 2. This latter 
remark motivates consideration of the following mixed state in place of 

W; s+M = Z la,12 (1.6) 
t 

IS+M S+M Where Ptr is the projection on to the manifold [ ]. W~ # W~ , the 
statistical density operator corresponding to ~b s+u. W~ s+M does, however, 
yield the same particular outcomes and with the same probabilities as 
W s+u for a large class of, though not all, measurements. (See on this score 
the work ofW. H. Furry (1936a, b), in particular, and my analysis (Hooker, 
1971) where other reference to the literature may be found.) 

Though the von Neumann reduction ignores W~ s+M, the Approxima- 
tionists essentially attempt to utilize it as a half-way house in the measure- 
ment process. The approximationist approach begins with the same state 
for the object system S, but an entirely different characterization of the 
initial state of the measuring apparatus M. (By contrast with the simple von 



234 c.A. HOOKER 

Neumann assumption that the measuring apparatus is in some eigenstate, 
usually the null state, of its pointer reading, the Approximationists attempt, 
at least in principle, to characterize the full atomic complexity of the 
measuring instrument.) Let us call this initial measuring apparatus state 
r Under the measurement interaction the combined system also 
evolves unitarily, i.e. according to Schrrdinger's equation, under a unitary 
operator which we shall call U'(t', t"). At the end of the measurement 
interaction we say that the system has evolved into the combined state 
Cs+.ff given by: 

| Z a,t = a~ ~,t=0) (1.7) 
l 

At this point the Approximationists aim to show that, after a sufficiently 
long time, the composite system S + M can be represented by a statistical 
operator which is macroscopically statistically indistinguishable from one 
of the form of W~ s+M, call it W 's+M (the only essential difference is that the A, t  , 

instrument states are more complex than those given in Wff T M  and are of the 
macro type, i.e. represented by projections on manifolds of the instrument 
Hilbert space rather than on a single subspace). We now also agree to 
accept the so-called Ignorance Interpretation of Mixtures, i.e. agree to claim 
that if a system S is in a mixture of states Ck with weighting coefficients pk 
then one is entitled to assert that actually the system is in one or other of 
the definite states ~bk and is in that state with probability pk. If  we put these 
latter two claims together we are licensed to claim that at the end of the 
measuring interaction, for all macroscopic purposes, the object and ap- 
paratus may effectively be claimed to be in some one or other of the definite 
states given by a mixture of the equation (1.6) type, with the probabilities 
lakl 2. The last part of the measuring process takes place when a human 
observer looks to see the actual outcome and finds which among the 
possibilities presented actually occurs, i.e. the transition from a representa- 
tion of the equation (1.6) type to that given by equation (1.5) occurs. We 
may now schematically compare and contrast the two accounts of measure- 
ment in the following diagram: 

von Neumann: 
pc ss -+ PCf+M -+ P~s+M 

I(U) R k.t 

Approximationist: 

W IS+M P.,,s+M --> P.,,s+~ -- -+ P,i,s+~ 
v'a,t.o I (U')  eA, t  m a c r o  A, t  R" wg,t 

The approximationist treatment is very much more complex than the 
yon Neumann treatment. What the approximationist claims to gain is a 
more realistic account of measurement. He claims this on two counts: 
(i) that the subjective role of the observer is removed from the realm of 
physicalprocesses (and restricted to the R' transition), (ii) that the measuring 
instrument is described quantum mechanically in a more accurate and 
physically plausible fashion. 



CONCERNING MEASUREMENTS IN QUANTUM THEORY 2 3 5  

The approximationist tries to limit the non-unitary changes in the 
representation of a system to those changes which may be accounted as 
purely epistemic and which, occurring also in classical physics, are held to 
be unproblematic and not to represent an intrusion of the observer's mind 
into natural physical processes. 

Though it is not my purpose to pursue the matter here in detail, I point 
out that both of these approaches to measurement have been severely 
criticized. The former basically because of the subjective or mentalistic 
component it injects into physics, but also for more technical reasons. 
(For some of the literature see Fine, 1968, 1969; Margenau, 1950, 1958; 
Margenau & Park, 1967). The approximationist approach has been 
criticized by Jauch et aL (1967) (but cf. Loinger, 1968), by Feyerabend 
(1962) and most decisively by Bub (1968). The essence of the non-technical 
part of Bub's criticism lies in pointing out that the approximationist 
account offered by Danieri et aL (1962) still permits the occurrence of 
superposed macro states, which occurrence is simply not a conceptually 
coherent possibility. 

What makes Jauch's account of measurement so interesting is that he 
aims at achieving a theory of measurement which retains the simplicity of 
the von Neumann approach, the physical credibility of the approximationist 
approach, further advantages which the approximationist approach does 
not have, and yet one which is free of the criticisms of both of the above 
approaches. It is now time to elaborate this ingenious approach. 

2. Jaueh's Theory of  Measurement 

In discussing Jauch we shall use the terminology developed above, which 
is equivalent to Jauch's, indicating correspondence between his equations 
and those above. To begin with we need to note the following mathematical 
fact. Let W s+~, W~ s+~t, VVS+M,, A,t be the statistical density operators 
corresponding to the states respectively of equations (1.4), (1.6) and 
(1.7) above. If H s, H M are the Hilbert spaces associated with the systems 
S and M respectively then the above operators (or states) refer to vectors 
in the composite Hilbert space 1-1 s+M= I-IS(~ H M. Assertion: If the 
composite state is characterized by the statistical density operator 
W s+~t, then the reduced component statistical density operators, W s, W, u 
are given by 

w ,  s = Y la,12P, s (2.1) 
l 

w t  M = Y~ la, lZP? ' (2.2) 
i 

where the Pl s, Pi ~ are projection operators for one-dimensional subspaces 
containing ~b~,t, ~btM(i) in H s and H M respectively. 

Jauch discusses an initial state for the system to be measured of the sort 
given by equation (I.1) above, an initial measuring instrument state and 
measuring interaction operator which leads to a final composite state for 
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object + measuring apparatus of the sort given by equation (1.4) above. 
Having obtained this final linear superposition state, Jauch then goes on to 
comment: 

After the measurement is completed we can imagine the interaction 
between S [the atomic system] and m [measuring instrument] removed. 
The reading of the scale consists in amplifying the record contained in m 
and deducing from it the state of S. 

The state of m, to be read with the amplifier, is obtained from the pure 
state (i 1-34) [+-+ equation (1.4) above] by reducing that state to the system 
m. We use the reduction formulas of the previous section [cf. equations 
(2.1) and (2.2) above] . . . .  

We see that both states have become mixtures .... No further observation 
on m will modify the state, and the measurement has become an objective 
record . . . .  each individual system m which may be used in the statistic of 
the measurement realizes one of the ... alternatives . . . .  there is no 
question of any superposition here. The reduction of the state to the 
system m has wiped out any phase relations. (Jauch, 1968, pp. 183-4). 

What exactly is going on here 9, What Jauch has to say leaves the matter 
somewhat obscure. There is no doubt that the state representations 
accorded to the reduced component states [Jauch's equation ii-35; 

equations (2.1) and (2.2) of text above] no longer retain any coherent 
phase relations among their individual terms. Equally certain is the fact that 
their coefficients give correct statistical weightings to the various possibilities 
occurring in them. In fact Jauch goes further and in the above quote 
affirms that we are actually entitled to say that one or other of the possi- 
bilities has actually occurred, objectively, independently of any further 
observation [compare his discussion of 'events' (Jauch, 1968) in section 
II-6]. But then what has become of the composite systemg, Have we 
destroyed in some way the composite linear superposition when we per- 
formed the reductions to the sub-spaces ? Jauch describes the process in 
different ways. At one point he says 'we can imagine the interaction ... 
removed' and at another point he says that '... both states have become 
mixtures'. This suggests that having the interactions cease and performing 
the reductions is some substantial kind of physical process, a process which 
destroys the original coherent linear superposition and replaces it by two 
incoherent statistical mixtures. But then what sort of reduction process is 
this 9. Jauch nowhere discusses the matter. 

Further, he actually says things which suggest that this reduction ought 
not to be taken as representing any significant change in the composite 
system. A little later on in the text Jauch considers the consistency of his 
measuring 'theory' (in fact he considers, not the usual problem, namely 
what the results of the measuring process would be if the original measuring 
instrument were included in the quantum mechanical 'object', but the 
reverse question of what the results will be if the object be included in the 
measuring instrument). At that point he remarks 'in this case there is no 
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occasion to reduce the pure s ta te . . ,  to that of  a mixture'. But this suggests 
that the original reduction process which we considered has no physical 
significance, hut only a purely formal one, for we apparently have a free 
choice about whether we employ it or no, depending on the point of view 
which we adopt toward the measuring interaction. But if the reduction were 
to be a substantial physical process, depending upon the measurement 
interaction ceasing, then we would not have an arbitrary choice as to whether 
to take it into account or not. 

Many of  the points raised in this paragraph will be returned to in what 
follows, but I believe that we shall gain a clearer insight into Jauch's inten- 
tions if we review briefly his response to the Einstein, Podolsky, Rosen 
(hereafter EPR) paradox. 

I shall assume the basic EPR paradox familiar to the reader. [It may be 
found discussed in detail in Feyerabend (1962), Furry (1936a, b), Hooker 
(1970, 1972), and Jauch (1968) for example.] The actual form of the paradox 
discussed by Jauch is that due to Bohm (1951). In describing the paradox 
Jauch has this to say: 

Let us assume that we have two systems I and II, which at a given time 
can interact with each other. We assume that the states of  each system 
are completely described by a two-dimensional vector space. Let 4_+ 
represent a complete orthonormal set of  vectors in the first space and 
~b+ a similar set in the second space. Let us further assume that the 
interaction between the two systems is such that at some time the (pure) 
state of  the joint system is given by 

4 = ~ 2  [(4+ e ~+) + (4-  | ~-)] (2.3) 

[~--~ equation 11-38 of Jauch] 

We now assume that the two systems can be isolated from each other . . .  
so that any observation carried out on one of the component systems 
cannot have any physical effect on the other system. 

After this separation the state is still given by equation (2.3). If  we now 
measure on system I whether it is in a state 4+ or 4 -  we find that it is in 
4~: with probability �89 The interesting point is that a measurement of  4_+ 
constitutes at the same time a measurement of ~+_ on system II . . . .  since 
the two systems are physically separated we have a means of determining 
the state of  system II 'without in any manner whatsoever perturbing the 
state' o f  that system. According to the criterion of  Einstein, Podolsky 
and Rosen, the quantity with the eigenstates ~b+_ of system II must therefore 
have an element of physical reality . . . .  

... Moreover this definite value must have had the same element of 
reality even before the measurement on system I was carried out, since a 
measurement on system I cannot produce any physical effect whatsoever 
on system II and thus cannot change the reality of a physical quantity in 
that system. 
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We are thus driven to the conclusion that the system (I + II) is in a 
mixture of two different states, namely, the state r | ~b+ and r | ~b 
mixed, with probabilities �89 Bur such a state is different from the state 
expressed by equation (2.3). Thus the acceptance of the notion of 
'physical reality' has led us to a contradiction. (Jauch, 1968, pp. 186-7; 
Jauch's italics.) 

Jauch replies to this problem by bringing to bear the theory of measure- 
ment which he has previously outlined (see above). In this reply he employs 
the quantities P+_, Q+_ which are projection operators in the Hilbert spaces 
of systems I and II respectively with the eigenfunctions ~+_, 4+_ respectively. 
He says: 

[The theory of measurement] ... tells us that after measurement of the 
quantity P+_, the system is in the state W~ | Wn, where W~ and /,VII 
are the reductions of the state W =  PC to the sub-systems I and II 
respectively. This result is a direct consequence of the [preceding] 
analysis. . .  

The effect of the observer on system (I + II) was thus to change the 
state W of that system to the state W~ | Wu. This change of the state of 
the entire system is exactly the same as the change which would have been 
obtained by measuring the quantity Q+_ of system II. We now see quite 
clearly that the attempt at restricting the observation to system I is 
illusory. The effect on the entire system is exactly the same, whether we 
observe P+ in system I or Q+ in system II. To be sure, in neither case is 
the state of sub-system I or sub-system II modified in any manner 
whatsoever. This state is before and after the measurement given by WI 
for I and Wn for II. 

The paradox originates in our habit of thinking that the states of two 
sub-systems determine uniquely the state of the composite system. As we 
have shown. . ,  this is usually not the case. In the present example the two 
different states W =  PO and Wx | WII have the same reductions to 
systems I and II and the measurement of either P+ or Q+ changes the 
state W of the combined system to the state (W~ + Wn). 

This shows that the application of Einstein's criterion of physical 
reality becomes ambiguous. It all depends on how we want to interpret 
the conditions 'in any manner whatsoever'. If  we refer it only to the state 
of the sub-systems I or II, it is obviously fulfilled; if we refer it to the entire 
system (I + II), it is not. In no case is there a contradiction of the uncer- 
tainty relation, because, as we have seen, a measurement of P+ has 
exactly the same effect on the states as a measurement of Q+. (Jauch 
1968, pp. 18%90; Jauch's italics.) 

There are several things about this reply to the EPR paradox which we 
need to note. (i) The first is that Jauch says quite clearly that the measure- 
ment does have a significant effect on the state of the composite system, for 
it changes that state from W = P~ to W~ | Wn. Shortly we shall examine 
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how that change can be seen as a consequence of the previous theory of 
measurement which Jauch has outlined. (2) The key to Jauch's reply to 
EPR is the distinction which he draws between the state of the composite 
system and the states of the component systems. For whereas the latter do 
not change under the measurement process, the former does and it is pre- 
cisely this difference which allows Jauch to accuse EPR of ambiguity in the 
application of their reality criterion. Now since even before the measurement 
was performed Jauch holds that the component states in the EPR system 
are given by W~ and WII it is clear that he must subscribe to the consistency 
of holding the following: simultaneously the composite system can be in 
the state W = PC and the component systems in the states W1 and WH. We 
shall later examine the consistency of this position. 

But before we go on to examine various aspects of Jauch's point of view 
it is important to emphasize the elegance and power of the position as it 
now appears from his reply to EPR. For if what Jauch has to say can be 
upheld then he will have produced a solution to the measurement problem 
which completely bypasses the need either for a reduction of the wave 
packet or for the intricacies of the approximationist approach, and yet at 
the same time solves in an elegant fashion the physical heart of the EPR 
paradox. I shall now fill in these points in more detail. 

If we are able to maintain, as Jauch evidently wishes to, that simultaneously 
with the composite system being in a linear superposition the component 
systems can be regarded as being represented by statistical mixtures, and 
hence as being in some definite state or other then we can explain immedi- 
ately the occurrence of definite measuling results. For when the measuring 
instrument interacts with the atomic object the two become a single com- 
posite system and in general Schr~dinger's equation couples these systems 
inextricably together in a linear superposition. It is the business of the 
theories of measurement previously considered to provide some de-coupling 
device, and this is done in a harsh fashion by von Neumann's reduction 
postulate and in a more sophisticated way by the Approximationist school. 
But Jauch is able to assert that simultaneously with the admission of the 
Schr~dinger equation linear superposition, the component systems, i.e. the 
atomic object and the measuring instrument, are in reality representable by 
statistical mixtures and hence (ignorance interpretation) in one or other of 
the definite states. Looking at the measurement result merely reveals which 
of these definite states in fact the instrument is in (and hence which cor- 
related definite state the atomic object is in). One seems to see immediately 
that there is no need for a reduction postulate of any sort and that the linear 
superposition given by Schr6dinger's equation is held to do no more than 
express correlations between the components of the composite system (in 
this case between measuring instrument state and atomic object state) which 
cannot otherwise be expressed in the individual statistical mixtures for the 
components. In this way Jauch is able to provide a very clean and simple 
view of the measurement process which undercuts the need for any of the 
traditional complications and thereby does away with all of the problems 
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which those complications bring with them (e.g. the subjectivism suggested 
by the yon Neumann reduction process). 

Moreover, Jauch's theory provides a very acceptable physical picture of 
what is happening in EPR-type situations. The physical heart of the EPR 
objection is the non-local properties of quantum theory which it seems to 
highlight. These arise essentially because the principle of superposition is 
valid everywhere (superselection rules excluded). Thus even when the two 
EPR components are spatially removed to very large distances apart the 
quantum mechanical representation of their composite state is still the 
linear superposition which seems to lead inevitably to the idea that the two 
are still in some substantial way connected with one another (see, for 
example, the argument presented in Bohm, 1951, Chapter 23 and in Hooker, 
1970). It is the physical implausibility of such non-localness implied by the 
superposition principle that EPR was attacking. (It is precisely this feature 
of quantum theory which has turned out to be such an integral part of it, 
see, for example, the powerful conclusions drawn on this basis by Belt, 
1966, cf. also Wigner, 1970.) But Jauch is able to assert that even before the 
measurement had taken place the component systems were already 
representable by statistical mixtures and hence already in definite states. 
For, taking our clue from Jauch's connecting the legitimacy of performing 
the reduction of the composite state to the component Hilbert spaces with 
the cessation of the appropriate interaction (see commencement of first 
quotation from Jauch, 1968, pp. 8-9 above) we conclude that immediately 
the EPR components cease interacting and separate it is legitimate to 
perform the reduction and thus arrive at the conclusion that the component 
systems are then already in definite states, before any measurement is 
performed. This provides us then with the essentially classical picture of 
what is happening in the EPR situation, namely that after the interaction 
between two components has ceased the states of the components are to be 
thought of as perfectly definite and merely correlated (i.e. correlated, but 
not because of any continuing physical connection between them). And 
measurement on one of the components then merely reveals the state of that 
component and hence, via the correlation, the state of the other, but no 
non-local connection need be postulated to understand and explain this 
physically. This point of view then represents a particularly elegant solution, 
both of the formal EPR objection and the physical problem of non-locality 
which EPR raises. 

It is the elegance of Jauch's position which makes it worthwhile pursuing 
and it is to be regretted that our subsequent examination will show the 
position to be untenable. 

3. Critique of Jauch's Theory (1): Technical Remarks 

Jauch tells us that we obtain the state of the composite EPR system after 
a measurement has been performed by directly applying the theory of 
measurement which has been outlined in the previous section. But this 
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application involves an essential element of ambiguity itself which needs to 
be brought out. Let us commence by considering the two components of 
some EPR-type system to be initially in the state. 

4'0 = ~0' | ~ '  (3.1) 

where the components are I, II respectively and we are assuming for the 
sake of  argument that they were initially unconnected with one another. 
They are then allowed to interact in a manner describable through the 
Schrtidinger equation so as to form a composite system and the interaction 
is then imagined to cease and the two systems to be separated by a very large 
spatial distance. I f  this whole process is governed by the SchrOdinger 
equation, an assumption on which both sides in the current dispute seem 
agreed, then we may represent the state of the system at the end of this 
process by 

bEPR = Z a, ~,' | ~b]' (3.2) 
i 

where ~b EPR = V(0, t)(~0 ~ | ~b~ I) and V(0, t) is the propagator for the inter- 
action according to the Schr6dinger equation. We assume the state of the 
system given by equation (3.2) to obtain up to some time t at which time a 
measurement on the system I of a physical quantity represented by the 
linear operator P is made. Formally, this measurement may be represented 
as a measurement on the composite system by replacing the linear operator 
P with the operator P |  in this formula the unit operator in the 
Hilbert space of  the component II. We assume the measurement interaction 
to be governed by a propagator U'(t, t') which transforms the measuring 
instrument state into one which is correlated with the system states but 
does not alter the system state, i.e. it is a good measurement of the first kind. 
If  we assume that initially the measuring instrument is in some null state 
of  its pointer reading given by ~b, M then we may represent the effect of  the 
measuring interaction on the system by 

U'(t, t') (~/i | •[i | ~t M) = ~il | ~]i | ~M(i ) (3.3) 

and thus at the end of  the measuring interaction the full composite state is 
given by 

~EPR(t') = ~, a, (~i I | ~]I | ~bff(i) (3.4) 

The full composite state given by equation (3.4) is represented by a 
vector in the composite Hilbert space H ~pR = H I | H I~ | H ~. Within 
this Hilbert space we are permitted at least four different reductions to 
component Hilbert spaces. Thus we may reduce the composite system to 
the component Hilbert spaces H I @ H n and H ~, or to H I | H M and 
H " ,  or to H II | H ~ and H I or finally to H I and H n and H ~. There is no 
doubt that we are formally permitted to do this. The question is" What is the 
physical significance of  this ambiguity of  the reduction? The two most 
interesting possibilities amongst these four are the first and the last, so let 



242 c.A. HOOKER 

US consider these for a moment. In the first case the reduced states are given 
by the following: 

Wi+. = ~ [a,12P~,~,,x (3.5) 
1 

WM -- ~ la, lZPo~,,,, (3.6) 

where P4~x.~,H is a projection operator for the state ~ l  | ~b~ in the 
Hilbert space H I | H I~ and Po~'c~) is a projection operator for the state 
~bM(i) in the Hilbert space H M. The reduced states in the case of the fourth of 
the above alternatives are given by 

W~ = ~ la,12ee,, (3.7) 
i 

w~ = ~ la, lZP~,. (3.8) 
1 

and by equation (3.6) above (the symbolism should by now be obvious). 
The first thing we need to note is that 

Wl+n ~ Wl | Wn (3.9) 

The difference between the right and left-hand sides of equation (3.9) is 
simply that the one but not the other, preserves correlations between the 
component systems I and II. Indeed, WH~ and WI @ WH are not even 
macroscopically equivalent in Jauch's sense, i.e. they do not belong to the 
same equivalence class. (This is again essentially because the one does, and 
the other does not, preserve correlations between the systems.) In the first 
place this result, and similar results that would be obtained if we considered 
the other two of the four possible reductions, should give us pause when 
considering the physical significance of these reductions. For remember 
that Jauch wishes to assert that simultaneously with the composite state 
being in a linear superposition, i.e. being represented by W= PeEps, the 
component states can be said to be represented by the statistical mixtures 
obtained from the reductions. But if the reductions are not only not unique, 
but not even equivalent (macroscopically or microscopically) then what 
physical sense are we to make of this claim of Jauch's ? Jauch provides us 
with no clue as to the answer. 

Secondly, a direct application of the theory of measurement which 
Jauch outlined (see above, Section 2) to the EPR situation suggests strongly 
that the break should be made for the purposes of reduction between the 
measuring instrument Hilbert space and the Hilbert space of the measured 
system. After all, this is the relevant interaction which is being made to cease. 
But this represents the first of our above reductions and not the fourth, 
whereas the state which Jauch assigns to the EPR system after the measure- 
ment has been made is that corresponding to the fourth reduction alternative 
and not the first. Since the difference between these two is non-trivial the 
question of how we should apply Jauch's theory of measurement to the 
EPR situation is non-trivially ambiguous. 
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But now let us attempt to work backwards and see whether we can apply 
the method which Jauch uses in the EPR case to every measurement situa- 
tion. That is we want to be able to argue, just as Jauch did for EPR, that even 
before the measurement the system is in a perfectly definite state and that 
all the measurement does is to reveal what this state is. Only in this way shall 
we provide the necessary physical picture of  what is happening in the 
measurement process to back up my previous suggestion that Jauch's 
position elegantly undermines the necessity for postulating some reduction 
process. We begin then by considering an atomic system S initially in the 
state 

q~,.0 = ~ a, ~bs.,,o 
l 

and we introduce a measuring instrument M at time t = 0 whose initial state 
is again the null state ~b0 M. If  once again the measurement process is effective 
and of the first kind then we may represent the state of the composite 
system S + M at the end of the measurement interaction by 

~bt s+~t = U(0, t) (~b0 ~t | ~ a, ~,,,.0) = ~ a, r | ~btM(i) (3.10) 
l i 

Now if we follow Jauch, we see that when the measuring interaction ceases 
and we perform the reduction of the composite system to the component 
Hilbert spaces we obtain the familiar statistical mixtures, that for the 
atomic system S being given by 

Ws = Y [a, lZPr (3.11) 
i 

Are we now still able to say that, even before the measurement process 
began, the system S was still in some definite state or other, i.e. could its 
state be represented by a statistical mixture ? To find the answer to this we 
must take the reduction of the composite state of S + Mbefore the measuring 
interaction began to the component Hilbert spaces. Now the composite 
state of  S + M before the interaction commenced is given by 

r | =r | 
l 

and the reduction of  this system to the component Hilbert space of  the 
system S alone is given by 

Ws' = P(),.o = P~,~i~,.t.o 

But Ws' represents a pure state for S and not a mixture; Ws' v a Ws. In fact, 
Jauch's theory of measurement is forced to postulate that the measurement 
process issues in the transition Ws' ~ Ws which is exactly the equivalent 
of  the physical part of the reduction of  the wave packet postulated by 
yon Neumann or approximated by the Approximationist school. Thus 
Jauch has not in general succeeded in removing the postulation of a 
reduction process, but only in disguising it beneath the mathematics. 

Indeed, one can work his trick if one is dealing initially with a composite 
16 
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system, for then the initial system before the measurement interaction is 
introduced already represents a state in a composite Hilbert space and so 
one can already obtain reductions for its components. But as soon as one 
looks at the equivalent measuring theory for a single system one sees that 
Jauch is forced to introduce the reduction process. 

Moreover, Jauch has nothing to say to us about the physical significance 
of this reduction process. The one clear statement which his remarks do 
suggest, namely that the reductions should occur when the appropriate 
interaction ceases, although of no help in understanding precisely what is 
happening physically, does lead to trouble elsewhere. For it suggests that 
already at the cessation of the interaction between the components of an 
EPR-type system and before any measurement is introduced, we should 
perform the reductions on that system; but then it would already be 
illegitimate to represent the state of the EPR system at the time of measure- 
ment by equation (3.2) above and it should rather be represented by 
Wx | Wn. But it is a well-known fact that these two representations would 
lead to quite different statistical predictions [indeed, even the representation 
given by equation (3.5) differs statistically from that given by equation 
(3.2)--see Furry (1936a, b), and my commentary (1972)]. But this is already 
to raise the question of the consistency of Jauch's position to which we must 
now turn in detail. 

4. Critique of Jauch's Theory (II): The Consistency of the Theory 

We shall begin by considering an abstract argument. To present the 
argument we shall first introduce some convenient labels. I shall describe 
as the Standard Theory of Quantum States the view that physical states are 
represented by vectors in the appropriate Hilbert spaces and characterize 
individual physical systems on particular occasions. This is the standard 
view of most quantum theorists and it asserts that SchrSdinger's equation 
is valid for individual physical systems as well as for ensembles of such 
systems. Secondly, I shall characterize as the Reduction Assumption the 
assumption that simultaneously with a composite system being representable 
by a linear superposition, the component states are representable by the 
statistical mixtures obtained by reducing the composite state to the com- 
ponent Hilbert spaces. Thirdly and finally I shall define the Ignorance 
Interpretation of Mixtures to be the view that whenever a mixture truly 
characterizes the state of some physical system then that physical system 
can be said to be actually in one or other of the definite component states 
occurring in the mixture (though which state will, of course, not be known 
except to within a certain probability). We may now present our argument 
as follows: 

P~ : The Standard Theory of Quantum States is assumed. 

Consider now a composite state represented by a linear superposition in 
the quantum theory, for example the state given by equation (3.2) above. 
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We know from the quantum theory that the reductions of that state to the 
component Hilbert spaces yield the statistical mixtures Wx and Wn given 
by equations (3.7) and (3.8) above. 

P2: The Reduction Assumption is granted. 
P3: Therefore, simultaneously with a system being represented by the 

state SEPR of equation (3.2) above, the component states are 
represented by WI and WII of equations (3.7) and (3.8) above. 

P4: The Ignorance Interpretation of Mixtures is assumed. 
P5: Therefore the actual state of the component I is one or other of the 

~i I and the actual state of component II is one or other of the ~ .  
Let these two states be respectively $,~, ~ .  

P6: But then the state of the composite system must be given by Sk ~ | ~ i  
which contradicts the original assumption that it was given by ~:PR 
of equation (3.2) above. 

PT: Moreover, even the conclusion that the components are in definite, 
though unknown, states (and even if we assume these states one-one 
correlated), would require WI+II (given by equation (3.5) above) as 
the appropriate representation for the state of the system, which still 
contradicts the initial assumption. 

It seems clear that Jauch assumes the standard theory of quantum 
states. And he has stated quite explicitly (see above quotations) that he 
assumes the ignorance interpretation of mixtures. But I have argued above 
(Section 2) that Jauch's treatment of the EPR case demands that he accept 
the reduction assumption (for otherwise he will not be able to say that, both 
before and after the measurement, the component states were given by the 
appropriate statistical mixtures). It would seem, therefore, that Jauch is 
caught clearly in this contradiction and that it will apply to his treatment of 
EPR, at least for all times prior to the actual cessation of the measurement 
interaction. I can see no way out of this dilemma for Jauch, nor does he make 
any comment on how he would deal with the difficulty. 

Since the argument seems clearly valid, one must remove the contra- 
diction by denying one or more of the premises. I have considered the 
alternatives in some detail in my essay (Hooker, 1972) and here I shall offer 
only brief reactions to the alternatives. 

There are those who attempt to deny the ignorance interpretation of 
mixtures (cf. Hooker, 1972; van Fraassen, 1971, for references). If this is 
not accompanied by a denial of the standard theory of quantum states 
then one is forced to view the attribution of a mixed state to a physical 
system as the attribution of some new kind of individual state which a 
system may possess. But this involves the renunciation of an essentially 
clear physical interpretation of mixed states (namely that provided by the 
concept of a classical ensemble) for a totally mysterious conception of the 
state. What are the physical features of such states ? What is it to be in a 
mixture now ? (These questions are not made any more clear by the only 
relevant piece of information we would have about these new mixed states, 
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namely that they are, or can be, the component states in a composite system 
which is represented by a linear superposition of their appropriate com- 
ponent states !) If the denial of the ignorance interpretation of mixtures is 
accompanied by a denial of the standard theory of quantum states, then one 
is totally in the dark as to what is being offered until an entirely new theory 
is put forward. To my knowledge, no such sweeping alternative that is 
physically satisfactory has been proposed. 

On the other hand there are those who attempt to deny the standard 
theory of quantum states. Thus it is becoming popular to claim that all 
quantum states, including linear superpositions, refer essentially only to 
ensemble states and that individual systems cannot be attributed a quantum 
state. (See, for example, Park, 1968; Ballentine, 1970). This alternative 
involves regarding linear superpositions as, nevertheless, representing states 
of statistical ensembles. But what could the individual member states of the 
statistical ensemble possibly be ? They cannot each be represented by the 
entire linear superposition on pain of trivializing this particular alternative. 
Since, on the other hand, the outcomes of particular measurements refer 
to the components of the linear superposition the only plausible alternative 
is to say that the ensemble members have states given by the individual 
components of the linear superposition. Thus in the case of the super- 
position given by equation (3.2) above, since on a measurement of P4~ | 
Q~I~ we obtain the eigenvalues corresponding to the composite eigenstate 
~i  | ~b[~ with probability la~[ 2 it seems necessary to say, if the original state 
is to represent an ensemble, that each member of the ensemble is in one 
or other of the states ~ | ~b~ I. But in this case we should completely 
obscure the difference between the state represented by equation (3.2) and 
that represented by equation (3.5) above. Now one might respond by 
saying that for measurements of other quantities it is the state given by 
equation (3.2) and not (3.5), which would give the correct statistics. This only 
leads, however, to a further difficulty in comprehension, for (3.2) gives the 
correct statistics for the measurements of other quantities only because of 
the coherence properties between the various members of the expansion in 
(3.2); but what on earth is the conception of an ensemble whose individual 
member states interfere with one another? (Moreover, the coefficients in 
equation (3.2) are complex and do not in general sum to unity so that they 
cannot be regarded as statistical weights in the usual sense.) 

If we reject the former two alternatives, we are forced to deny the reduction 
assumption. Now I have already tried to provide physical argument for 
denying the reduction assumption in the preceding text. For in complex 
systems the reductions which are mathematically possible are neither 
mathematically nor physically (macroscopically or microscopically) 
equivalent. If the reduction assumption were taken seriously then it should 
at least be applicable to all possible reductions, but this is not possible since 
it would then lead to a contradiction. If we reject the reduction assumption, 
what are we to make of the formal mathematical ability to perform such 
reductions ? There seems here a very plausible point of view to take. It is 
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the full composite system which is the most faithful representation of the 
physical state of affairs. What the reductions do is to provide partial 
information concerning some aspects of the states of the component systems 
in such a composite system. It must be emphasized that it is information only 
and that it is information which pertains only to the responses of such 
component systems to a measurement interaction. For if we take the quantum 
theory seriously we shall be forced to conclude from the symmetry 
properties of the composite system and the many differing reductions which 
are in general possible for it, differing according to the kind of  measurement 
proposed, that the components in a composite system really have no 
separately assignable physical state; one can only obtain information about 
the outcomes of measurements upon them. This view seems both consistent 
and more physically plausible than its alternatives and it is the one I propose 
we should adopt. 

Having now discussed the consistency of Jauch's view--and having found 
it to be inconsistent--we turn briefly to discuss the physical plausibility of 
Jauch's position. 

5. Critique of Jauch's Theory (III): 
The Physical Reasonableness of the Theory 

The main point here, which has been examined in detail elsewhere 
(Hooker, 1970), can be put quite simply: We have seen that Jauch must 
assert that the interaction between one of the components of  the EPR 
system and a measuring instrument effects a significant change in the state 
of  the entire system, namely it effects the change from the state W = P+ to 
the state WI | WI~ (see Section 2 above). But ex hypothesi, the two com- 
ponent systems of the EPR system are no longer in physical interaction with 
one another. How then could a measurement on one of  the components 
affect the state of  the entire composite system. The reduction assumption 
would of course permit us to say that the state of  the other component (for 
that matter, also the state of the measured component) had not really 
altered. But we have seen that the reduction assumption must be rejected. 
Since Jauch fails to provide us with any significant physical connection 
between the two components which would explain the transition which he 
is forced to postulate we are drawn back to the conclusion that there is a 
non-local feature to the quantum theory (in this case Jauch's quantum 
theory) for which we have as yet no satisfactory physical understanding.t 
But it was precisely this feature of quantum theory to which EPR wished 
to draw attention. 

t Jauch sometimes speaks as if the correlations themselves provided such a connection, 
but these may be mere correlations without a physical connection as basis--see Hooker 
(1970). And if the only physical feature which the linear superposition of the composite 
state contributes are these correlations, it again obscures the difference between it and 
the corresponding statistical mixture, e.g. between r of Equation (3.2) and WI+II of 
equation (3.5). 



248 c.A. HOOKER 

Before concluding this section let us now return briefly to a question left 
somewhat vague in the preceding: Under just which conditions is it per- 
missible to perform the reductions of a composite system state to the com- 
ponent Hilbert spaces ? The answer initially suggested by a first considera- 
tion of Jauch's treatment of EPR, and by some of his earlier comments, is 
that whenever the appropriate interaction ceases we are to perform the 
reductions and to take the state of the composite systems thereafter as the 
tensor product of the component states thus obtained. But we have seen 
that this process would lead us to conclude, for example, that after the 
interaction had ceased among the EPR components, but before a measure- 
ment was being made, the true state of the system would be that given by 
W~ | Wn [or perhaps data given by equation (3.5) above]; but neither this 
system [nor that of equation (3.5)] can predict the correct statistics for 
measurements of other physical quantities on the composite system, this 
can only be done by the representation given in equation (3.2) [again see 
Furry (1936a, b) and my commentary (1972)]. Nor are we able to hold that 
the components are in the reduced states simultaneously with the com- 
posite state holding, for this is just the reduction assumption. Perhaps we 
ought to say, on Jauch's account, that these reductions can be made only 
after a measurement interaction has taken place, and not just any interaction 
whatever. But why a measurement interaction? Jauch's theory gives no 
reason to believe that these are special in this respect. Indeed, the whole 
drift of the theory is that these reactions are precisely not special in this 
respect, but simply some examples of quantum interactions. We are left, 
therefore, with an essential element of obscurity in the application of Jauch's 
reductions, an obscurity which reflects the obscurity of what exactly one is 
doing physically when one carries out these reductions mathematically. 
Neither have we been able to clarify the question of when the composite 
state is to be considered as truly composite and when not, vis-h-vis the 
inclusion of one part of it in the other (for example vis-gt-vis the question 
considered briefly on pp. 94-95 above of including the object system in the 
measuring apparatus). Since it would seem that when we choose to do this 
and when not is a purely pragmatic decision on our part, the question of 
when the reductions ought to be performed and when not becomes a prag- 
matic decision on our part. In Jaueh's theory, we are left, therefore, with 
two elements of obscurity in the question of precisely which conditions 
suffice for carrying out these reductions and what their physical significance 
is in each case. (Of course, if one accepts the interpretation of reductions 
which I advocated on pp. 104-105 above then it becomes irrelevant when 
one performs these 'reductions', since one is not thereby doing anything 
physical, one is only obtaining information.) 

6. Conclusion 

Jauch's theory of measurement, if satisfactory, would have provided an 
elegant and very simple solution to all of the standard difficulties found in 
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other  versions o f  the measurement  process in quan tum theory. We have 
examined this theory and found it to contain an impor tant  element o f  
obscurity (that concerned with just  exactly under  what  conditions the 
reductions may be performed) and ambiguity (namely concerning which 
reductions are to be performed),  but  mos t  important ly  we have concluded 
that  it was both inconsistent and lacking in physical plausibility. 
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